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Quasigroups Connected with Clifford Groups

Jerzy Kociński1
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In Clifford groups, a nonassociative product is defined which leads to the definition
of nonassociative groups. These nonassociative groups have matrix
representations on the condition that the “row by column” product of two matrices
is replaced by the “column by column” product. A nonassociative group of
transformations connected with the Lorentz group is determined, together with
its irreducible, double-valued matrix representation, whose matrices undergo the
“column by column” product.

1. INTRODUCTION

The idea of applying a nonassociative algebra in physics first appeared
with Jordan (1932, 1933). Subsequently Jordan et al. (1934) discussed certain
linear, real nonassociative algebras which satisfy the ordinary postulates for
addition, the commutative law of multiplication, and the distributive law.
They demonstrated that, with a single exception, every algebra satisfying the
above postulates is equivalent to an algebra M whose elements are real
matrices with products x ? y defined by the Jordan product x ? y 5 (xy 1
yx)/2, where xy denotes the matrix product. The single exception is the
algebra M 8

3 of all three-dimensional Hermitian matrices, with elements in the
real nonassociative algebra of Cayley numbers. Albert (1934) proved that
M 8

3 is a new algebra which is not equivalent to any algebra obtained by the
Jordan product of real matrices. Full expositions of Jordan algebra are given
by Braun and Koecher (1966) and Jacobson (1968). A further discussion of
the physical aspects of nonassociative algebras was given by Segal (1947)
and Sherman (1956). Applications in quantum mechanics and elementary
particle physics of the algebra of octonions and of Jordan algebra were
discussed by Gürsey (1979). In this paper, we discuss a hitherto unexploited
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approach to nonassociative algebras and groups. From the mathematical
standpoint, this investigation belongs to the realm of quasigroups (Pflugfelder,
1990; Chein et al., 1990).

2. CLIFFORD QUASIGROUPS

We consider Clifford algebras with the generators g1, g2, . . . , gN for
N 5 1, 2, . . . ,

gmgn 1 gngm 5 2dmn, m, n 5 1, 2, . . . , N (1)

For a fixed N, the basis of a Clifford algebra consists of the identity 1, the
generators g1, . . . , gN , and all linearly independent products of these genera-
tors. The dimension of this algebra is 2N. Since the respective group G
contains the element 21, its order is 2N11.

Definition 2.1. The involution operation I in a Clifford group G is
defined by

I(gm) 5 2gm, I(I(gm))5 gm, I(61) 5 61

I(gmgn . . . gs) 5 I(gs) . . . I(gn)I(gm) (2)

gm, gn, . . . , gs P G

For the group elements consisting of products of g’s, we introduce the notation

gmgn . . . gs 5 gmn...s (3)

Definition 2.2. Define the following group automorphism by the equality

I(gA)gB 5 gC for a fixed gA (4)

where, for brevity, gA , gB , and gC now denote arbitrary elements of a Clifford
group, i.e., also arbitrary products of the elements ga, a 5 1, 2, . . . , N,
where for any gA 5 gagb ??? gr, we have g21

A 5 gr ??? gbga.

Corollary 2.1. The automorphisms defined in Eqs. (2) and (4) form
groups.

Definition 2.3. Define the product

(gmn...s) ? (geh...r) :5 I(geh...r)gmn...s (5)

where the product on the right-hand side is the associative product in Clifford
groups. For single-g group elements this definition reads

gm ? gn :5 I(gn)gm (6)

The following definitions together with the consequences which are implied
by them are based on Definition 2.3.
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We will write the elements gmn...s in the “dot” product on the left-hand
side of Eq. (5) with a caret, which means that (gmn...s) ? (geh...r) will be
replaced by (ĝmn...s) ? (ĝeh...r).

In the following, we will denote the Clifford group elements by a, b,
c, . . . , or, alternatively, by g1, g2, . . . , gm.

Definition 2.4. If 1 denotes the unit element in a Clifford group and a
an element in that group, the right unit element 1̂ for the “dot” product in
Eq. (5) is defined by the equality

â ? 1̂ 5 I(1)a 5 a → â for any a P G (7)

where the arrow on the right-hand side indicates the passage from Clifford
group elements to elements undergoing the “dot” product.

Corollary 2.2. The right unit element is not at the same time a left unit
element since from Eq. (5) we obtain

1̂ ? â 5 I(a)1 5 I(a) (8)

and in a Clifford group, in a general case, we have I(a) Þ a.

Corollary 2.3. The right unit element 1̂ applied from the left twice does
not change any element in the “dot” product since we have

1̂ ? (1̂ ? â ) 5 I[I(a)1]1 5 a → â for any a P G (9)

Corollary 2.4. From Eq. (5) it follows that

(â ? b̂ ) ? ĉ 5 â ? [ĉ ? (1̂ ? b̂ )] for any a, b, c P G (10)

Proof. We have (â ? b̂ ) ? ĉ 5 I(c) (â ? b̂ ) 5 I(c)I(b)a and â ? [ ĉ ?
(1̂ ? b̂ )] 5 I[ĉ ? (1̂ ? b̂ )]a 5 I[I(1̂ ? b̂ )c]a 5 I(c)I(b)a.

Corollary 2.5. The “dot” product is nonassociative. Equation (10)
replaces the law of associativity of multiplication in a Clifford group.

Definition 2.5. The nonassociative multiplication in Eq. (5) is performed
from left to right:

â ? b̂ ? ĉ ? . . . ? ẑ 5 {[(â ? b̂ ) ? ĉ ] ? . . . ? ẑ} (11)

Corollary 2.6. From Eq. (5) it follows that

ab 5 b̂ ? I(a) for any a, b P G (12)

where on the right-hand side I(a) 5 a8 → â 8.

Definition 2.6. If a21 is the inverse of a in the Clifford group, then the
right inverse of â is defined by
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â 21 5 I(a21) (13)

since from Eq. (12) we obtain 1 5 a21 a 5 â ? I(a21) → 1̂.

Corollary 2.7. â21 5 I(a21) is equal to the left inverse since from Eqs.
(10) and (9) we have

1̂ 5 1̂ ? 1̂ 5 1̂ ? (â ? â 21) 5 [1̂ ? (1̂ ? â 21)] ? â 5 â 21 ? â (14)

Corollary 2.8. From the definitions in Eqs. (5), (7), (11), and (13),
it follows that the g’s in the “dot” product form a nonassociative group.
Consequently, these equations define a nonassociative group connected with
a Clifford group. The respective nonassociative Clifford algebra is defined
to have a basis consisiting of the right identity 1̂, the generators ĝm, m 5 1,
. . . , N, fulfilling the condition ĝm ? ĝn 1 ĝn ? ĝm 5 22dmn 1̂, m, n 5 1, . . . ,
N, and all linearly independent products of these generators. The dimension
of this algebra is 2N. To perform the multiplication of these generators or
their products, Eq. (5) has to be applied. An example is given in Section 5.

In order to avoid unnecessary brackets in the formulas, we shall omit
from now on the “dot” while multiplying any element from the left or from
the right by the right unit element. Instead of 1̂ ? â or â ? 1̂, we shall write
1̂â or â1̂, respectively; instead of b̂ ? (1̂ ? â ), we shall write b̂ ? 1̂â; and â ?
1̂ ? b̂ will be replaced by â1̂ ? b̂. Consequently, Eq. (10) takes the form

(â ? b̂ ) ? ĉ 5 â ? (ĉ ? 1̂b̂ ) (15)

Corollary 2.9. From Eq. (15) it follows that

1̂(â ? b̂ ) 5 b̂ ? â (16)

Corollary 2.10. From â ? â21 5 1̂, it follows that (1̂â ) ? (1̂â21) 5 1̂.

Proof. We utilize Eqs. (9) and (10). Writing â21 5 b̂ and multiplying
â ? b̂ 5 1̂ from the right by (1̂b̂ )21, we obtain (â ? b̂ ) ? (1̂b̂ )21 5 â ? [(1̂b̂ )21

? 1̂b̂ ] 5 1̂(1̂b̂ )21 5 â. Multiplying 1̂(1̂b̂ )21 5 â by 1̂ from the left, we obtain
(1̂b̂ )21 5 1̂â, which multiplied by 1̂b̂ from the right yields the equalities.

(1̂b̂ )21 ? (1̂b̂ ) 5 (1̂â ) ? (1̂b̂) 5 (1̂â ) ? (1̂â 21) 5 1̂ (17)

Corollary 2.11. We have

(â ? b̂ )21 5 â 21 ? b̂ 21 (18)

Proof. From Eqs. (10) and (17) we obtain

(â ? b̂ ) ? (â 21 ? b̂ 21) 5 â ? [(â 21 ? b̂ 21) ? 1̂b̂ ]

5 â ? [â 21 ? (1̂b̂ ? 1̂b̂ 21)] 5 â ? â 21 5 1̂ (19)
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Corollary 2.12. From Eq. (18), it follows that (1̂â )21 5 1̂â21, since
1̂ 5 1̂21.

Corollary 2.13. For p factors ĝ1 ? ĝ2 ? . . . ? ĝp , we have

(ĝ1 ? ĝ2 ? . . . ? ĝp)21 5 g21
1 ? g21

2 ? . . . ? g21
p (20)

since from Eq. (18) and from (ĝ1 ? ĝ2 ? . . . ? ĝk)21 5 g21
1 ? g21

2 ? . . . ? g21
k , it

follows that (g1 ? g2 ? . . . ? gk ? gk11)21 5 (g1 ? g2 ? . . . ? gk)21 ? g21
k11 5

g21
1 ? g21

2 ? . . . ? g21
k ? g21

k11.

Corollary 2.14. From Eqs. (16) and (15), it follows that

1̂(â ? b̂ ? ĉ ) 5 ĉ ? 1̂b̂ ? â (21)

since we have 1̂[(â ? b̂ ) ? ĉ ] 5 ĉ ? (â ? b̂ ) and ĉ ? (â ? b̂ ) 5 ĉ ? 1̂b̂ ? â.

Corollary 2.15. For p factors ĝ1 ? ĝ2 ? . . . ? ĝp , we have

1̂(ĝ1 ? ĝ2 ? . . . ? ĝp21 ? ĝp) 5 ĝp ? 1̂ĝp21 ? . . . ? 1̂ĝ2 ? ĝ1 (22)

Proof. Let ĝ1 ? q̂2 ? . . . ? ĝp 5 (ĝ1 ? q̂2 ? . . . ? ĝp22) ? ĝp21 ? ĝp 5 Ŵ,
then, owing to Eqs. (15) and (21), we obtain

1̂Ŵ 5 ĝp ? 1̂ĝp21 ? (ĝ1 ? ĝ2 ? . . . ? ĝp22)

5 (ĝp ? 1̂ĝp21) ? [(ĝ1 ? ĝ2 ? . . . ? ĝp23) ? ĝp22]

5 (ĝp ? 1̂ĝp21) ? 1̂ĝp22 ? (ĝ1 ? ĝ2 ? . . . ? ĝp23)

5 (ĝp ? 1̂ĝp21 ? 1̂ĝp22) ? [(ĝ1 ? ĝ2 ? . . . ? ĝp24) ? ĝp23] (23)

and repeating this procedure, we obtain Eq. (22).

Observation 2.1. If the nonassociative product definition in Eq. (5) is
replaced by the definition

â ? b̂ :5 aI(b) (24)

we again obtain Eqs. (7), (11), and (13), which define a nonassociative group
connected with a Clifford group. The choice between product definitions in
Eqs. (5) and (24) will be made in the next section.

Corollary 2.16. The definitions in Eqs. (5) or (24) of a nonassociative
product together with Eqs. (7), (11), and (13) hold for any group G, with
elements g and unit element e, for which an involution operation I exists,
which fulfils the conditions I(g) P G, I[I(g)] 5 g, I(g1g2 . . . gp) 5 I(gp) . . .
I(g2)I(g1), I(e) 5 e for any g, g1, g2, . . . , gp P G.
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3. REPRESENTATIONS OF NONASSOCIATIVE GROUPS

The product definition in Eq. (5) together with the conditions (7)–(13)
connected with it are fulfilled by square, nonsingular matrices, for which the
“row by column” multiplication is replaced by the “column by column”
multiplication (or, alternatively, “row by row” multiplication). This type of
product of two matrices was introduced by Banachiewicz (1929, 1937, 1938,
1959) and matrices undergoing this product rule were called by him “cracovi-
ans.” An exposition of cracovian algebra was given by Sierpiński (1951).

Consequently, a square or rectangular table of numbers or other symbols
can be called a matrix or a cracovian, depending on the product definition
of two such tables. This means that representations of nonassociative Clifford
groups exist.

Definition 3.1. A representation by linear substitutions of a nonassocia-
tive group G8 connected with a Clifford group G is a cracovian quasigroup
onto which the nonassociative group is homomorphic. It consists of the
assignment of a quadratic cracovian C(â ) to each nonassociative group ele-
ment â in such a way that

C(â ) ? C(b̂ ) 5 C(â ? b̂ ) for all â, b̂ P G8 (25)

The notion of irreducibility of a matrix representation carries over for a
cracovian representation. The criteria of irreducibility of cracovian representa-
tions have to be determined, however, since the irreducibility criteria of matrix
representations of groups do not carry over for cracovian representations of
nonassociative groups connected with Clifford groups. In particular, this
means that a set of square tables of complex numbers in its quality of being
a matrix representation of a group can be a reducible representation, while in
its quality of being a cracovian representation of the respective nonassociative
group, it can be an irreducible cracovian representation. An example of such
a case will be given in Section 5.

Observation 3.1. The notions of faithful or unfaithful matrix representa-
tions and of their dimension in the case of groups carry over for cracovian
representations of nonassociative groups connected with Clifford groups.
Each cracovian quasigroup is its own faithful representation.

4. THE NONASSOCIATIVE GROUP OF TRANSFORMATIONS
CONNECTED WITH THE LORENTZ GROUP

Writing a four-vector in the Minkowski space in the form
›

x 5 g1x1 1 g2x2 1 g3x3 1 g4x4 (26)

with x4 5 ict, we can write its transformation under Lorentz rotations in
the form
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›
x 8 5 gmx8m 5 S21 (gmxm)S (27)

where S and S21 are biquaternion transformations (Sommerfeld, 1944). We
have

S 5 Ag23 1 Bg31 1 Cg12 1 D 1 iag14 1 ibg24 1 icg34 2 idg5 (28)

where g5 5 g1g2g3g4, and reversing on the right-hand side the signs of A,
B, C, a, b, and c, we obtain S21. With real Cayley–Klein parameters A, B,
C, D, a, b, c, and d, we obtain SS21 5 S21S 5 1 on the two conditions:

A2 1 B2 1 C 2 1 D2 2 a2 2 b2 2 c2 2 d 2 5 1 (29)

Aa 1 Bb 1 Cc 1 Dd 5 0 (30)

From Eq. (27), we obtain the rotation matrix !m with the elements

a11 5 (D2 1 A2 2 B2 2 C 2) 1 (d 2 1 a2 2 b2 2 c2)

a22 5 (D2 2 A2 1 B2 2 C 2) 1 (d 2 2 a2 1 b2 2 c2)

a33 5 (D2 2 A2 2 B2 1 C 2) 1 (d 2 2 a2 2 b2 1 c2)

a44 5 (D2 1 A2 1 B2 1 C 2) 1 (d 2 1 a2 1 b2 1 c2)

a12 5 2(AB 1 CD) 1 2(ab 1 cd ), a21 5 2(AB 2 CD) 1 2(ab 2 cd ) (31)

a13 5 2(AC 2 BD) 1 2(ac 2 bd ), a23 5 2(BC 1 AD) 1 2(bc 1 ad )

a14 5 2i[(Da 2 Ad ) 2 (Bc 2 Cb)], a24 5 2i[(Ac 2 Bd ) 2 (Ca 2 Db)]

a31 5 2(AC 1 BD) 1 2(ac 1 bd ), a41 5 2i[(Ad 1 Cb) 2 (Bc 1 Da)]

a32 5 2(BC 2 AD) 1 2(bc 2 ad ), a42 5 2i[(Ac 1 Bd ) 2 (Ca 1 Db)]

a34 5 2i[(Ba 2 Ab) 2 (Cd 2 Dc)], a43 5 2i[(Ba 2 Ab) 2 (Dc 2 Cd )]

We now rewrite the Lorentz rotations in Eq. (27) in the matrix-product form

x8m 5 !m xm (32)

and in the respective cracovian-product form

x8c 5 xc ? T!c 5 xc ? Pc (33)

where the column matrices x8m and xm in Eq. (32) are identical with the
column cracovians x8c and xc in Eq. (33), where T denotes the “transpose”
cracovian [see Eq. (6.3)] and the square matrix !m in Eq. (32) is identical
with the square cracovian !c in Eq. (33). The subscripts c and m have been
introduced to distinguish the cracovian tables from the matrix tables.
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If the index j of the matrix elements ajk in Eq. (31) is identified with
the column index of a cracovian and the index k with its row index, then the
elements ajk in Eq. (31) are the elements of the cracovian Pc 5 T!c in Eq.
(33). This is due to the fact that the cracovian T transposes the cracovian !c

(see Corollary 6.3) The cracovian Pc may, for brevity, be called a quasi-rotation
cracovian, since it represents nonassociative transformations connected with
Lorentz rotations.

5. AN IRREDUCIBLE DOUBLE-VALUED CRACOVIAN
REPRESENTATION

We will determine an irreducible double-valued cracovian representation
of the quasi-rotations Pc in Eq. (33). We first consider the nonassociative
biquaternion group, whose elements are determined from Eq. (5). For exam-
ple, we obtain

ĝ23 ? ĝ31 5 I(g31)g23 5 g13g23 5 2g12 5 g21

which is identified with ĝ21, and

ĝ23 ? iĝ14 5 iI(g14)g23 5 ig41g23 5 2ig1234 5 2ig5

which is identified with 2iĝ5. The resulting Cayley table is given in Table
I. The two inequivalent two-dimensional irreducible representations (irreps) of
the biquaternion group at the same time are cracovian irreps of the respective
nonassociative biquaternion group. The nonassociative biquaternion group
has, however, another cracovian irrep of the form

Table I. Multiplication Table for Nonassociative Biquaternion Group with 1̂ Denoting
the Right Unit Element and Numbers Denoting the Indices of the Respective ĝ-Symbols

1̂ 23 31 12 i14 i24 i34 i5

1̂ 1̂ 32 13 21 i41 i42 i43 i5
23 23 1̂ 21 31 2i5 i43 i24 i41
31 31 12 1̂ 32 i34 2i5 i41 i42
12 12 13 23 1̂ i42 i14 2i5 i43

i14 i14 2i5 i43 i24 21̂ 12 13 23
i24 i24 i34 2i5 i41 21 21̂ 23 31
i34 i34 i42 i14 2i5 31 32 21̂ 12

i5 i5 i14 i24 i34 32 13 21 21̂
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L(ĝ23) 5 5
0 21 0 0
1 0 0 0
0 0 0 21
0 0 1 0

6, M(ĝ31) 5 5
0 0 21 0
0 0 0 1
1 0 0 0
0 21 0 0

6
N(ĝ21) 5 5

0 0 0 21
0 0 21 0
0 1 0 0
1 0 0 0

6, T(1̂) 5 5
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

6 (34)

l(iĝ14) 5 iL, m(iĝ24) 5 iM, n(iĝ34) 5 2iN, t(iĝ5) 5 2iT

where here and in the following we use wavy brackets for cracovian tables
to distinguish them from matrix tables. To prove the irreducibility of the
representation in Eq. (34), we consider the nonassociative quaternion group
in Table I, consisting of the four elements 1̂, ĝ23, ĝ31, ĝ12 together with the
same elements multiplied by 21. This has four one-dimensional representa-
tions given in Table II, and no other one-dimensional representations exist.
If the cracovians in Eq. (34) were reducible to a block-diagonal form with
one-dimensional blocks and three-dimensional blocks, the one-dimensional
blocks would be identical with one of the four representations in Table II.
This, however, is impossible since the four-dimensional cracovian 2T cannot
be changed into the cracovian T in Eq. (34) by any similarity transformation.
Consequently, three-dimensional blocks also are excluded. A similarity trans-
formation [see Eq. (6.17)] cannot lead to two-dimensional-block cracovians
since the blocks connected with L, M, and N would be of the form

H k 1 ir s 1 it
p 1 iq u 1 ivJ (35)

with real k, r, s, t, p, q, u, and v. The reduced cracovians would have to obey
the Cayley table. From Table I, we then would find that k 1 ir 5 u 1 iv 5
0, and s 1 it 5 2( p 1 iq). From L2 5 M 2 5 N 2 5 T, it follows that

Table II. The Four One-Dimensional Representations of the Nonassociative
Quaternion Group

T 2T L 2L M 2M N 2N

(1) 1 1 1 1 1 1 1 1
(2) 1 1 21 21 21 21 1 1
(3) 1 1 1 1 21 21 21 21
(4) 1 1 21 21 1 1 21 21
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p 5 1 and q 5 0, and therefore the equality L ? M 5 N which is required
by Table I cannot be fulfilled by the block-diagonal cracovians. Consequently,
the cracovian representation in Eq. (34) is irreducible. This means that Burn-
side’s theorem for matrix representations of groups does not hold for cracovian
representations of nonassociative groups.

We now consider the nonassociative biquaternion transformation

Q̂ 5 Aĝ23 1 Bĝ31 1 Cĝ21 1 D1̂ 1 aiĝ14 1 biĝ24 1 ciĝ43 2 diĝ5 (36)

in which we replace the nonassociative biquaternion elements by their cracov-
ian representation in Eq. (34), thus obtaining the cracovian

Qc 5 5
(D 1 id ) 2(A 1 ia) 2(B 1 ib) 2(C 1 ic)
(A 1 ia) (D 1 id ) 2(C 1 ic) (B 1 ib)
(B 1 ib) (C 1 ic) (D 1 id ) 2(A 1 ia)
(C 1 ic) 2(B 1 ib) (A 1 ia) (D 1 id )

6 (37)

with the parameters D, A, B, C, d, a, b, and c satisfying Eqs. (29) and (30).
Owing to the irreducibility of the representation in Eq. (34), this cracovian
is irreducible. We have Qc ? Qc 5 T, which means that Qc 5 Q21

c . The
cracovian Qc with a 5 b 5 c 5 d 5 0 appears in Banachiewicz (1938).

The cracovian Qc yields a double-valued representation of the quasi-
rotations Pc in Eq. (33). The following proof is analogous to that of Wigner
(1959) concerning the two-to-one homomorphism of the group SU(2) onto
the group SO(3).

The square cracovian form Xc of the vector
›

x c connected with the column
cracovian xc in Eq. (33) in the basis (L, M, N, T ) in Eq. (34) is given by

Xc 5 5
x4 2x1 2x2 2x3

x1 x4 2x3 x2

x2 x3 x4 2x1

x3 2x2 x1 x4
6 5 (

›
x c,

›
q c) (38)

where (
›

x c,
›

q c) denotes a scalar product of
›

x c and
›

q c 5 (L, M, N, T ).
We now consider the nonassociative transformation

Qc ? (TXc) ? Q*c 5 X 8c 5 (
›

x 8c,
›

q c) (39)

where * denotes the conjugate complex operation. It can be verified that the
coordinates x81, x82, x83, x84 calculated from Eq. (39) are those calculated from
Eqs. (33) with the elements of the cracovian Pc in Eqs. (31) in which the
first index of ajk is to be interpreted as the column index of Pc. This means
that the transformation in Eq. (33) which carries xc into x8c 5 xc ? Pc can be
determined from Eq. (39). We observe that from Eq. (39), it follows that
(

›
x 8c)2 5

›
x 2

c.
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To demonstrate that to the product Q(1)
c ? Q(2)

c of two transformations in
Eq. (37) corresponds the product of two quasi-rotations Pc(Q(1)

c ) ?
Pc(Q(2)

c ) 5 Pc(Q(1)
c ? Q(2)

c ), we write for the first transformation Q(1)
c , utilizing

Eq. (38),

Q(1)
c ? T (

›
x c,

›
q c) ? (Q(1)

c )* 5 (
›

x c ? Pc,
›

q c) (40)

and for the successive second transformation Q(2)
c we have

Q(2)
c ? T[Q(1)

c ? T (
›

x c,
›

q c) ? (Q(1)
c )*] ? (Q(2)

c )* 5 ([
›

x c ? Pc(Q(1)
c )] ? Pc(Q(2)

c ),
›

q c)

(41)

By the repeated application of equality (A.6), the left-hand side of Eq. (41)
can be transformed to the form

(Q(2)
c ? TQ(1)

c ) ? T(
›

x c,
›

q c) ? (Q(2)
c ? TQ(1)

c )*

By a single application of that equality, the right-hand side takes the form

(
›

x c ? [Pc(Q(2)
c ) ? TPc(Q(1)

c )],
›

q c) 5 (
›

x c ? Pc(Q(2)
c ? TQ(1)

c ),
›

q c)

since TPc(Q(1)
c ) 5 Pc(TQ(1)

c ). This proves the homomorphism between the
nonassociative group of four-dimensional cracovians in Eq. (37) and the
nonassociative group of quasi-rotations Pc in Eq. (33). Since the two four-
dimensional cracovians T and 2T belonging to the cracovian Qc, and only
these two, correspond to the right unit element of the nonassociative group
of quasi-rotations, that homomorphism is two to one. If the square table Qc

in Eq. (37) is identified with a matrix, it is reducible with the help of the matrix

U 5
1

!2 3
1 0 0 i
0 2i 21 0
0 2i 1 0
1 0 0 2i

4 (42)

6. RESULTS BASED ON BANACHIEWICZ AND SIERPIŃSKI

This section is based on Banachiewicz (1959) and Sierpiński (1951).

Definition 6.1. A rectangular cracovian is defined as the table of elements

A 5 5
a11 a21 ??? am1

a12 a22 ??? am2

??? ??? ??? ???
a1n a2n ??? amn

6 (6.1)

where the first index of an element akl denotes a column and the second
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index 2 a row, and where wavy brackets are used to distinguish a cracovian
table from a matrix table.

Observation 6.1. The definitions of a symmetric or antisymmetric matrix
carry over from matrices on cracovians.

Definition 6.2. The product of two cracovians A and B, denoted by A ?
B, is obtained by multiplying the columns of A by the columns of B. Two
cracovians can therefore be multiplied if they have the same number of rows.
The element in the kth column and in the lth row of the cracovian A ? B is
obtained by multiplying the kth column of A by the lth column of B:

(A ? B)kl 5 o
i

akibli (6.2)

Observation 6.2. The cracovian product can also be defined in the terms
of row by row multiplication.

Corollary 6.1. The multiplication of cracovians is noncommutative.

Definition 6.3. The square diagonal cracovian defined by

(T )kj 5 1 for k 5 j and (T )kj 5 0 for k Þ j (6.3)

corresponds to the right identity in a nonassociative Clifford group. It is
called the transpose.

Corollary 6.2. Any cracovian A multiplied by T from the right remains
unchanged, and multiplied from the left is changed to the transposed
cracovian.

Corollary 6.3. For any cracovian A, we have

T(TA) 5 A (6.4)

Corollary 6.4. For any two cracovians A and B, we have

T(A ? B) 5 B ? A (6.5)

Corollary 6.5. For cracovians, the law of associativity of multiplication
is replaced by the equality

(A ? B) ? C 5 A ? [C ? (TB)] (6.6)

Definition 6.4. The multiplication of cracovians is performed from left
to right:

A ? B ? C ? D ? . . . ? Z 5 {[A ? B) ? C ] ? D ? . . . ? Z} (6.7)

Corollary 6.6. For three cracovians A, B, and C, we have
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T(A ? B ? C) 5 C ? (TB) ? A (6.8)

Definition 6.5. The right inverse of a square cracovian A is defined as
such a cracovian A21 that we have

A ? A21 5 T (6.9)

Corollary 6.7. From Eqs. (6.5) and (6.9), it follows that A21 is also the
left inverse.

Corollary 6.8. For a square cracovian A with the inverse A21, we have

(TA) ? (TA21) 5 T (6.10)

Corollary 6.9. For the product of two square cracovians A1 and A2 having
inverses, we have

(A1 ? A2)21 5 A21
1 ? A21

2 (6.11)

Corollary 6.10. From Eq. (6.11), we have

(TA)21 5 TA21 (6.12)

Observation 6.3. The relation between the matrix product AB and the
cracovian product of two tables A and B is given by the equality

AB 5 B ? (TA) (6.13)

where on the right-hand side, the tables A and B are treated as cracovians.

Observation 6.12. The relation between the matrix product of three
tables A, B, and C and the respective cracovian product is given by

ABC 5 C ? (TB) ? (TA) (6.14)

where on the right-hand side, the three tables are treated as cracovians.

Observation 6.13. A square table has the cracovian inverse if and only
if it has the matrix inverse.

Observation 6.14. A matrix inverse of a square table is equal to the
transpose of the cracovian inverse of that table.

Definition 6.6. Let
›

e m and
›

e c denote the column matrix or column
cracovian, respectively, constructed from the basis vectors

›
e 1, . . . ,

›
e n of an

n-dimensional linear vector space. Let Sm and Sc be the respective matrix or
cracovian transformation of the basis vectors. The change of basis then is
defined by the expression

›
e 8m 5 S̃m

›
e m 5

›
e c ? T(TSc) 5

›
e c ? Sc 5

›
e 8c (6.15)

where S̃m denotes the transposed matrix.
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Corollary 6.11. Let xm and xc (or ym and yc) denote the column matrix
or column cracovian constructed from the components x1, . . . , xn (or y1, . . . ,
yn) of a vector, referred to the two bases in Eq. (6.15), respectively. The
relation between the two sets of components is given by

xm 5 Sm ym 5 yc ? TSc 5 xc (6.16)

where the transformation table S has been identified with a matrix Sm or with
a cracovian Sc, depending on the type of the employed product.

Corollary 6.12. The relation between matrix and cracovian transforma-
tions Am and Bm or Ac and Bc, respectively, determining the same linear
mapping referred to two bases connected according to Eq. (6.15) is given by

Bm 5 S21
m AmSm 5 Sc ? TAc ? S21

c 5 Bc (6.17)

Corollary 6.13. Let xm and xc denote the column matrix and column
cracovian, respectively, constructed from the components x1, . . . , xn of a
vector. A linear mapping of that vector expressed in the terms of matrix or
cracovian product is given by

x8m 5 Amxm 5 xc ? TAc 5 x8c

where the table A has been identified with a matrix Am or with a cracovian
Ac, depending on the type of the employed product.

7. CONCLUSIONS AND DISCUSSION

Nonassociative groups connected with Clifford groups have been
defined. That definition carries over on any group in which an involution
operation exists. Representations of these nonassociative groups exist in the
form of cracovians. An irreducible double-valued cracovian representation of
the quasi-rotations Pc connected with Lorentz rotations has been determined. It
can be shown that the Dirac equation is covariant with respect to the quasi-
rotations Pc. This suggests that the nonassociative group of quasi-rotations
Pc may perhaps describe a hidden symmetry of the Dirac equation in the sense
of Weyl (1952). The cracovian Qc could then be considered for description of
some dynamical properties of spin-1/2 particles.
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Sierpiński. W. (1951). Zasady Algebry Wyższej [Principles of Higher Algebra], Mono-grafie

Matematyczne, Warsaw.
Sommerfeld, Arnold (1944). Atombau und Spektrallinien, Vol. II, Vieweg, Braunschweig.
Weyl, Hermann (1952). Symmetry, Princeton University Press, Princeton, New Jersey.
Wigner, E. P. (1959). Group Theory, Academic Press, New York.


